BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth.
نویسندگان
چکیده
During embryogenesis, ectodermal stem cells adopt different fates and form diverse ectodermal organs, such as teeth, hair follicles, mammary glands, and salivary glands. Interestingly, these ectodermal organs differ in their tissue homeostasis, which leads to differential abilities for continuous growth postnatally. Mouse molars lose the ability to grow continuously, whereas incisors retain this ability. In this study, we found that a BMP-Smad4-SHH-Gli1 signaling network may provide a niche supporting transient Sox2+ dental epithelial stem cells in mouse molars. This mechanism also plays a role in continuously growing mouse incisors. The differential fate of epithelial stem cells in mouse molars and incisors is controlled by this BMP/SHH signaling network, which partially accounts for the different postnatal growth potential of molars and incisors. Collectively, our study highlights the importance of crosstalk between two signaling pathways, BMP and SHH, in regulating the fate of epithelial stem cells during organogenesis.
منابع مشابه
Signaling Involved in Hair Follicle Morphogenesis and Development
Hair follicle morphogenesis depends on Wnt, Shh, Notch, BMP and other signaling pathways interplay between epithelial and mesenchymal cells. The Wnt pathway plays an essential role during hair follicle induction, Shh is involved in morphogenesis and late stage differentiation, Notch signaling determines stem cell fate while BMP is involved in cellular differentiation. The Wnt pathway is conside...
متن کاملAbnormal Hair Development and Apparent Follicular Transformation to Mammary Gland in the Absence of Hedgehog Signaling
We show that removing the Shh signal tranducer Smoothened from skin epithelium secondarily results in excess Shh levels in the mesenchyme. Moreover, the phenotypes we observe reflect decreased epithelial Shh signaling, yet increased mesenchymal Shh signaling. For example, the latter contributes to exuberant hair follicle (HF) induction, while the former depletes the resulting follicular stem ce...
متن کاملInterfollicular epidermis Bulge Epidermis Upper Middle Lower Isthmus Dermal papilla Hair germ Sebaceous gland Hair shaft Dermis Shh BMP Wnt
The niche microenvironment controls stem cell number, fate, and behavior. The bone marrow, intestine, and skin are organs with highly regenerative potential, and all produce a large number of mature cells daily. Here, focusing on adult stem cells in these organs, we compare the structures and cellular components of their niches and the factors they produce. We then define the niche as a functio...
متن کاملThe Niche-Dependent Feedback Loop Generates a BMP Activity Gradient to Determine the Germline Stem Cell Fate
Stem cells interact with surrounding stromal cells (or niche) via signaling pathways to precisely balance stem cell self-renewal and differentiation. However, little is known about how niche signals are transduced dynamically and differentially to stem cells and their intermediate progeny and how the fate switch of stem cell to differentiating cell is initiated. The Drosophila ovarian germline ...
متن کاملHedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex.
Stem cells are crucial for normal development and homeostasis, and their misbehavior may be related to the origin of cancer. Progress in these areas has been difficult because the mechanisms regulating stem cell lineages are not well understood. Here, we have investigated the role of the SHH-GLI pathway in the developing mouse neocortex. The results show that SHH signaling endogenously regulate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental cell
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2015